首页> 外文OA文献 >High-temperature interface superconductivity between metallic and insulating cuprates
【2h】

High-temperature interface superconductivity between metallic and insulating cuprates

机译:金属与金属之间的高温界面超导性   绝缘铜酸盐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-temperature superconductivity confined to nanometer-size interfaces hasbeen a long standing goal because of potential applications^{1,2} and theopportunity to study quantum phenomena in reduced dimensions^{3,4}. However,this is a challenging target: in conventional metals the high electron densityrestricts interface effects such as carrier depletion/accumulation to a regionmuch narrower than the coherence length, the scale necessary forsuperconductivity to occur. In contrast, in copper oxides the carrier densityis low while the critical temperature (T_c) is high and the coherence lengthvery short; so, this provides a breakthrough opportunity but at a price: theinterface must be atomically perfect. Here we report on superconductivity inbilayers consisting of an insulator (La_2CuO_4) and a metal(La_{1.55}Sr_{0.45}CuO_{4}), neither of which is superconducting in isolation.However, in bilayers T_c is either ~15 K or ~30 K, depending on the layeringsequence. This highly robust phenomenon is confined within 2-3 nm from theinterface. If such a bilayer is exposed to ozone, T_c exceeds 50 K and thisenhanced superconductivity is also shown to originate from the interface layerabout 1-2 unit cell thick. Enhancement of T_c in bilayer systems was observedpreviously^5 but the essential role of the interface was not recognized at thetime. Our results demonstrate that engineering artificial heterostructuresprovides a novel, unconventional way to fabricate stable, quasi two-dimensionalhigh T_c phases and to significantly enhance superconducting properties inknown or new superconductors.
机译:由于潜在的应用^ {1,2}和研究尺寸缩小的量子现象的机会^ {3,4},限制在纳米尺寸界面上的高温超导性已成为长期目标。然而,这是一个具有挑战性的目标:在常规金属中,高电子密度将界面效应(例如载流子耗尽/积累)限制在比相干长度窄得多的区域,这是发生超导所必需的尺度。相反,在氧化铜中,载流子密度低,而临界温度(T_c)高,并且相干长度非常短。因此,这提供了突破性的机会,但要付出代价:界面必须在原子上完美。在此我们报告了由绝缘体(La_2CuO_4)和金属(La_ {1.55} Sr_ {0.45} CuO_ {4})组成的超导双分子层,两者都不是孤立地超导。但是,在双层中T_c约为15 K或〜30 K,取决于分层顺序。这种高度鲁棒的现象被限制在距界面2-3 nm之内。如果这样的双层暴露于臭氧,则T_c超过50 K,并且这种增强的超导性也显示为源自约1-2个单元电池厚的界面层。先前曾观察到双层系统中T_c的增强^ 5,但当时尚未意识到界面的基本作用。我们的结果表明,工程人工异质结构提供了一种新颖的,非常规的方式来制造稳定的准二维高T_c相并显着增强已知或新的超导体的超导性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号